Nanoparticles made of amphiphilic biotransesterified cyclodextrins: ultrastructure and thermal behavior

Jean-Luc Putaux¹, <u>Christine Lancelon-Pin</u>¹, Luc Choisnard², Annabelle Gèze², Delphine Levilly², Christine Charrat², Cyrille Rochas¹, Yoshiharu Nishiyama¹ and Denis Wouessidjewe²

¹CERMAV, UPR CNRS 5301, Université Grenoble Alpes, Grenoble, France

² DPM, UMR CNRS 5063, UFR de Pharmacie, Université Grenoble Alpes, Grenoble, France

Aiming at designing nanocarriers to deliver bioactive compounds to a target site in sufficient amount and without premature degradation, we have developed colloidal nanovectors based on cyclodextrin (CD) amphiphilic derivatives. β CDs were acylated on their secondary face using thermolysin as biocatalyzer. After dissolution in acetone, a series of β CD-C_n (n = 6 to 14) derivatives were nanoprecipitated in water. The resulting particles were observed by cryo-TEM and SAXS patterns were collected at ESRF upon heating to 130°C. After cooling, the suspensions were observed by cryo-TEM as well. Periodic structures were detected when the alkyl chains contained at least 8 carbons. In most cases, the position of SAXS peaks was consistent with a hexagonal structure when the degree of substitution (DS) of the parent derivative was higher than 5. β CD-C_n (n = 8, 10, 12) particles were barrel-like while β CD-C₁₄ particles had tortuous multidomain shapes. Axial projections of the hexagonal organization were sometimes observed. The particles prepared from β CD-C₁₀ and β CD-C₁₄ derivatives with DS<5 were spherical, exhibiting a multilamellar structure. Upon heating to 130°C, no structural transition was observed in these systems. Hexagonal-to-hexagonal transitions were detected at 80-100°C in β CD-C_n systems with n = 10, 12 and 14. Upon cooling, β CD-C₁₀ particles converted to multilamellar nanospheres while β CD-C₁₄ particles exhibited bulkier prismatic shapes and were constituted of hexagonally-packed hollow hoops.