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1. INTRODUCTION

Electron microscopy techniques have been used to probe the optical properties of materials in the
subwavelength scale [1]. In particular, it has been shown that using cathodoluminesncence [2] and by a
propitious choice of electron beam energy and target material, resolution below 10 nm is attainable [3].
However, typical cathodoluminescence experiments only probe the spectral information of the emitted light,
being an analogue of photoluminesncence at the nanoscale [4].

In this contribution, two types of experiments attempting to implement quantum optics techniques in the
electron microscope will be presented. In these experiments a 1-nm-wide 60 keV electron beam was used to
excite the sample. Fundamentally, we have measured the second order correlation function (g‘(t)) of the emitted
light of different materials using a Hanbury-Brown and Twiss interferometer (an intensity interferometer, Fig.
1a).

2. RESULTATS

Experiments have been performed on a VH HB501 microscope operated at 60 kV. The samples have been
kept at 150 K. The typical electron beam current was of the order of a few tens of pA and the beam width was of
the order of 1 nm.

With the first set of experiments we have shown that single photon emission from NV° centers in diamond
can be observed (that is, light antibunching is seen from these objects, Fig. 1b) [5]. More interestingly, we have
detected changes in the g*(t) function within single 150 nm wide diamond crystals. With the same setup, we
have detected a new single photon source in h-BN emitting in the 350 nm range.

In the second set of experiments, we have used the same interferometer to measure the g®(t) of
nanodiamonds containing hundreds NV° emitters. Surprisingly, we have observed a large bunching effect in the
nanosecond time scale. This bunching arises due to the simultaneous excitation of multiple centers by a single
incoming electron and it gives information about the excitation mechanism behind light emission in
cathodoluminescence [6]. This effect allows the measurement of objects’ lifetimes in close proximity.
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Figure 1. a) Sketch of the intensity interferometer used in our experiments. b) Typical g®(t) curve,
showing light antibunching from NV centers excited by fast electrons (red curve) compared to a classical
emitter (black curve), such as a large ensemble of emitters.



3. CONCLUSION

To conclude, we have used two sets of experiments to show how a typical quantum-optics technique (light
intensity interferometry) can be used in a cathodoluminescence setup to obtain information from individual
guantum emitters at the nanometer length scale (such as single photon sources).
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