Novel electron microscopic methods for 3D imaging of subcellular structures

Paul Walther

Central Facility for Electron Microscopy, Ulm University, Ulm, Germany

The main challenge of visualizing subcellular structures in 3D is sample preparation preventing artifact formation. We believe that cryo-fixation protocols are the method of choice to arrest cells at defined physiological conditions to preserve a life-like state. Afterwards we dehydrate these samples at cold temperature (freeze substitution) and embed them in a resin. Different protocols are now available to obtain a 3D dataset. With scanning transmission electron microscopic (STEM) tomography, semi-thin sections up to a thickness of about 1 μ m can be recorded in 3D. The resolution is very good in X and Y (in the range of a few nanometers, depending from the structural preservation during specimen preparation), and reasonably well in Z (limited by the missing wedge problem). Eukaryotic cells, however, have a thickness of up to 10 µm or more, therefore, even with STEM tomography only a small portion of the cell can be recorded. Alternative methods are serial sectioning tomography and focused ion beam/scanning electron microscopic (FIB/SEM) tomography. Serial sectioning only requires an ultra microtome and an electron microscope as equipment. The resolution in Z is, however, restricted to the section thickness (about 100 nm). With FIB/SEM tomography the resolution in X and Y can be as good as in TEM images of the same plastic embedded material.