Epitaxie par jets chimiques : application à la croissance de structures mixtes arséniures-phosphures et de nitrures d'éléments III

Magali Mesrine (Février 1999)

Résumé de thèse

Avec l'objectif d'étendre la qualification de l'Epitaxie par Jets Chimiques (EJC), deux familles de matériaux possédant des potentialités de développement importantes ont été considérées : les structures mixtes arséniures-phosphures et les nitrures d'éléments III. Nous avons tout d'abord étudié la faisabilité de super-réseaux GaAs/Ga0.51In0.49P à courte période. Nous avons montré que la principale limitation est liée à la maîtrise de la composition chimique des interfaces de ce système. L'utilisation de la technique de diffraction d'électrons en incidence rasante a ainsi permis la mise en évidence en temps réel pendant la croissance d'un phénomène de ségrégation de surface de l'indium. L'étude complémentaire des échanges entre As et P qui se produisent lors des interruptions de croissance au niveau des interfaces du système GaAs/GaInP, a permis de clarifier l'effet des conditions de croissance sur les énergies de photoluminescence des puits quantiques réalisés dans ce système de matériaux. L'ensemble de ce travail a montré que l'EJC est une technique de choix pour la réalisation et l'étude d'hétérostructures faisant intervenir plusieurs éléments V. Cependant, son développement est lié à sa capacité à permettre la réalisation de nouveaux matériaux. Dans ce contexte, nous avons étudié les potentialités de l'utilisation de l'ammoniac (NH₃) comme précurseur d'azote pour les croissances EJC à basse température de nitrures d'éléments III. Deux voies ont été explorées pour décomposer NH₃. La première a consisté à " pré-décomposer " la molécule dans une cellule à craquage catalytique, avant son arrivée sur la surface de croissance. L'étude, menée par spectrométrie de masse, a montré que la cinétique joue un rôle significatif dans cette réaction. Il apparaît ainsi que la conductance est de l'injecteur est le paramètre primordial à optimiser pour développer cette voie. L'autre voie envisagée concerne la décomposition de NH3 sur la surface de croissance. La réflectivité optique a été utilisée in-situ pour déterminer le taux de décomposition de NH₃ sur la surface de croissance en présence de Ga. Nous montrons qu'il devient significatif au dessus de 450°C ce qui permet la croissance de nitrures à basse température.

Mots clés :

Semi-conducteurs III-V, épitaxie sous ultravide par jets chimiques, structures mixtes arséniures-phosphures, RHEED, photoluminescence, nitrures d'éléments III, spectrométrie de masse, décomposition thermique, ammoniac.