

Déformation d'un film mince dans le plan de croissance et perpendiculairement au plan de croissance:

$$\boldsymbol{e}_{xx} = \boldsymbol{e}_{yy} = \frac{\boldsymbol{a} - \boldsymbol{a}_o}{\boldsymbol{a}_o} \qquad \boldsymbol{e}_{zz} = \frac{\boldsymbol{c} - \boldsymbol{c}_o}{\boldsymbol{c}_o}$$

Dans la cas d'un système hexagonal, la loi de Hooke qui relie contrainte et déformation s'écrit:

I	∣r – – – – – – – – – – – – – – – – – – –	
\mathbf{S}_{xx}	$C_{11}C_{12}C_{13} 0 0 0$	$\boldsymbol{\theta}_{xx}$
Syy	$C_{12}C_{11}C_{13} 0 0 0$	$\boldsymbol{\theta}_{yy}$
Szz	$C_{13}C_{13}C_{33} 0 0 0$	e zz
\mathbf{S}_{xy}	$0 0 0 C_{44} 0 0$	$\boldsymbol{\theta}_{xy}$
S _{vz}	$0 0 0 0 C_{44} 0$	$\boldsymbol{\theta}_{vz}$
S ₇	$0 0 0 0 0 0 C_{66}$	e ₂
_~~」		- ~ -

$$\frac{C-C_0}{C_0} = -2\frac{C_{13}a-a_0}{C_{33}a_0}$$

La contrainte dans le plan est:

$$\boldsymbol{S}_{xx} = \boldsymbol{S}_{yy} = (C_{11} + C_{12} - 2\frac{C_{13}^2}{C_{33}})(\frac{a - a_0}{a_0})$$

Pour un alliage, on peut en plus déterminer les concentrations, en
appliquant la loi de Vegard. En prenant l'exemple de l'alliage In_xGa_{1-x}N:

$$a_{0x}=xa_{lnN}+(1-x)a_{GaN}$$

 $c_{0x}=xc_{1nN}+(1-x)c_{GaN}$
 $C_{13x}=xc_{13lnN}+(1-x)c_{13GaN}$
 $c_{33x}=xc_{33lnN}+(1-x)c_{33GaN}$
Avec a_{0x} et c_{0x} paramètres de
maille de l'alliage non
contraint, et a_x et c_x paramètres
de maille de l'alliage épitaxié

		c ₁₁	c ₁₂	c ₁₃	c ₃₃	c ₄₄
AIN	Tsubouchi	345	125	120	395	118
	Mc Neil	411	149	99	389	125
1 111 1	Deger	410	140	100	390	120
	Kim (theo.)	398	140	127	382	96
	Wright (theo.)	396	137	108	373	116
	Polian	390	145	106	398	105
GaN	Schwarz	377	160	114	209	81.4
	Deger	370	145	110	390	90
	Yamaguchi	365	135	114	381	109
	Kim (theo.)	396	144	100	392	91
InN	Kim (theo.)	271	124	94	200	46
	Wright(theo)	233	115	92	224	48
	Robert	Langer Thèse de	e l'Université Jose	eph Fourier Grenc	ble 1, 2000	

La détermination de la concentration de l'alliage nécessite la mesure de a_x et de c_x . c_x est obtenu à partir de d_{0002} par un balayage $\theta/2\theta$ puis a_x à partir de la détermination de la position d'un pic asymétrique (d_{10-15} ou autre) par un balayage $\omega/2\theta$, un balayage ω ou par une cartographie autour de ce pic.

Pour des couches mosaïques mi-hauteur ($f(1/L_{ }, tilt)$) en couche. Il faut étudier conjoi réflexion asymétrique.	avec des dom Q _y (w) n'est p intement la larg	aines « twistés pas un critère d geur à mi-haut	s », la largeur à le qualité de la eur d'une	
fwhm (0002) arcsec	fwhm (10- 12) arcsec	Nature des des dislocations	Densité de dislocations en cm-2	

ſ

	arcsec		dislocations	en cm-2
А	296	413	a, c et a+c	7 10 ⁸
В	40	740	а	2.5 1010

B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. Den Baars, J.S. Speck, Appl. Phys. Lett. 68, 643 (1996).

		Fil	ms EJM	ZnO		
	fwhm en arcsec					
	(0002)	(10-15)	(10-12)	twist	Taille des domaines	Densité de dislocatior en cm ⁻²
Z63 (croissan ce 2D)	30	120	2900	+/-0.4deg	25-75nm	1-4 10 ¹⁰
Z58 (croissan ce 3D)	250	230	500	+/- 0.07deg	100- 500nm	3-5 10 ⁹

F. Vigué, P. Vennéguès, C. Deparis S. Vézian, M. Laügt and J.-P. Faurie, J. Appl. Phys, 90, 5115 (2001).

